Röntgen vonalprofil analízis

Mérési jegyzőkönyv

Rudolf Ádám Fizikus MSc.

Mérőtársak:Kozics György, Májer ImreMérésvezető:Hegedűs ZoltánMérés időpontja:2011. november 10.Leadás időpontja:2011. december 1.

Bevezető

Mérésünk során röntgendiffrakciós módszerrel ismerkedtünk. Pordiffrakciós mintáról forgóanódos diffraktométerrel készített képeket értékeltünk ki. A felvételek három-három imaging plate-re készültek, amik képeit egy célprogrammal az egyik dimenzió mentén összeintegráltuk, hogy egy 1 dimenziós intenzitásfüggvényt kapjunk 29 függvényében. Az egy méréshez tartozó 3 képet öszefűztük, a hiányzó részeket konstans értékkel töltve ki. Így kaptuk meg a végleges intenzitásfüggvényt. Ez alapján határoztuk meg a csúcsok helyét, és félétrékszélességét.

Williamson-Hall módszer

A Williamson-Hall módszer magyarázatot ad a diffrakciós vonalak kiszélesedésére. Legeneráljuk az úgynevezett Williamson-Hall ábrát, amin, ha a pontok folytonos görbére illeszkednek, a kiszélesedés oka elsősorban a diszlokációkban keresendő, nem pedig a szemcsék deformáltságában. Az ábra megalkotásához a követekző adatokra lesz szükségünk:

A röntgen sugárzás hullámhossza: $\lambda = 0,154056 nm$

 $\bar{C}_{h00} = 0.3$, ami az átlagos kontrasztfaktor a *h00* reflexióra.

A q érték pedig egy diszlokációkka összefüggő, anyagra jellemző konstans, ami rézre q=2, nikkelre pedig q=1,79.

Diffrakciós vektor: $g = \frac{2\sin\theta}{\lambda}$

Félértékszélesség: $FWHM = \frac{2\Delta 9 \cos 9}{\lambda}$

$$\bar{C} = \bar{C}_{h00}(1 - qH^2)$$
, ahol $H = \frac{h^2 k^2 + k^2 l^2 + h^2 l^2}{(h^2 + k^2 + l^2)^2}$

A Williamson-Hall ábra (1. *ábra*, 3. *ábra*) g függvényében, a módosított Williamson-Hall ábra (2. *ábra*, 4. *ábra*) pedig \overline{C} függvényében ábrázolja *FWHM*et. A módosított WH ábrákra parabolát illesztettem. Mind a réz, mind a nikkel esetében az adatpontok jól illeszkedtek a parabolára, így kijenelthetjük, hogy a csúcsok kiszélesedését elsősorban a diszlokációk okozzák.

A mért, és számolt adatokat a rézre az 1. táblázat, a nikkelre a 2. táblázat tartalmazza.

2teta	delta2teta	g (nm-1)	fwhm (nm-1)	h	k	I	H^2	Cbar	g^2*Cbar
43,31	0,14	4,79	0,83	1	1	1	0,33	0,10	2,33
50,39	0,23	5,53	1,38	2	0	0	0,00	0,31	9,32
74,13	0,26	7,82	1,33	2	2	0	0,25	0,15	9,34
89,90	0,40	9,17	1,84	3	1	1	0,16	0,21	17,60
95,08	0,29	9,58	1,28	2	2	2	0,33	0,10	9,33
116,96	0,68	11,07	2,29	4	0	0	0,00	0,31	37,35
l táblázat Ráz minta márt ás számolt adatai									

1.	táblázat.	Réz	minta	mért	és	számoli	t adai	tai
----	-----------	-----	-------	------	----	---------	--------	-----

2teta	delta2teta	g (nm-1)	fwhm (nm-1)	h	k	I	H^2	Cbar	g^2*Cbar
44,51	0,06	4,92	0,34	1	1	1	0,33	0,11	2,58
51,75	0,09	5,67	0,50	2	0	0	0,00	0,26	8,50
76,52	0,10	8,04	0,53	2	2	0	0,25	0,15	9,46
92,96	0,16	9,41	0,69	3	1	1	0,16	0,19	16,88
98,42	0,84	9,83	3,57	2	2	2	0,33	0,11	10,32
121,94	0,28	11,35	0,87	4	0	0	0,00	0,26	34,13

2. táblázat. Nikkel minta mért és számolt adatai

Az illesztett $ax^2 + bx + c$ egyenletű parabolák paraméterei rézre:

$$a = (-0,0011 \pm 0,00017) nm^{3}$$

$$b = (0,089 \pm 0,0074) nm$$

$$c = (0,61 \pm 0,055) nm^{-1}$$

És nikkelre:

$$a = (-0,00045 \pm 0,000030) nm^{3}$$
$$b = (0,033 \pm 0,0012) nm$$
$$c = (0,254 \pm 0,0086) nm^{-1}$$

Mikroszerkezet meghatározása

A CWPM, azaz konvolúciós teljes profil illesztés módszerét használtuk, ami azt jelenti, hogy egy sokparaméteres elméleti függvényt illesztettünk a teljes profilunkra, és az illesztési paraméterekből meghatároztuk a mikroszerkezeti állandókat. Az illesztés ábrája az 5. *ábrán* látható a profillal, az illesztett görbével, és a kettő különbségével.

A *3. táblázat* tartalmazza az illesztési paramétereket, amiket a numerikus módszerekkel való trükközés okán még fel kell szoroznunk bizonyos skálafaktorokkal.

5. ábra. Réz minta intenzitásprofilja az illesztett görbével, és a kettő különbsége. A csúcsok mellett fel vannak tüntetve a megfelelő Miller-indexek.

	Érték	Hiba	Skála	Skálázott érte	Skálázott hib
а	2,082	0,0066	1	0,01376	0,000044
b	1,096	0,0018	3,5	0,00193	0,00003
С	1,162	0,0055	0,5	0,00634	0,000030
d	1,035	0,0065	60	0,00670	0,000042
е	0,584	0,0096	0,15	0,00559	0,000092

3. táblázat. Az illesztési paraméterek hibákkal együtt, közvetlenül, és skálázva.

Az elméleti megfontolásokat hanyagolva a mikroszerkezeti paraméterek:

$$m = e^{b} (1 \pm b \,\delta \,b) = (46 \pm 1,0) \,nm$$

$$\sigma = \frac{c}{\sqrt{2}} (1 \pm \delta \,c) = 0,410 \pm 0,0011$$

$$q = a (1 \pm \delta \,a) = 2,08 \pm 0,014$$

$$\rho = \frac{2}{\pi (|\vec{b}|d)^{2}} (1 \pm 2 \,\delta \,d) = (0,002 \pm 0,002) nm^{-2}$$

$$R_{e} = \frac{e^{-0.25}}{2 e} (1 \pm \delta \,e) = (4,447 \pm 0,0064) \,nm$$

$$M = R_{e} \sqrt{\rho} (1 \pm (\delta \,e + \delta \,d)) = 0,22 \pm 0,087$$

Szemcseméret eloszlás

Úgy feltételezzük, hogy a szemcseméretnek lognormális eloszlása van:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}x} \exp\left(\frac{-\ln(x/m)^2}{2\sigma^2}\right)$$

Ebből számolható a számtani, felülettel súlyozott és térfogattal súlyozott átlaga:

$$\langle x \rangle_{arit} = m \exp(0.5 \,\sigma^2) \cdot (1 \pm (\delta \,m + \sigma \,\Delta \,\sigma)) = (50.3 \pm 0.5) \,nm$$
$$\langle x \rangle_{area} = m \exp(2.5 \,\sigma^2) \cdot (1 \pm (\delta \,m + 5 \,\sigma \,\Delta \,\sigma)) = (70 \pm 1) \,nm$$
$$\langle x \rangle_{arit} = m \exp(3.5 \,\sigma^2) \cdot (1 \pm (\delta \,m + 7 \,\sigma \,\Delta \,\sigma)) = (86 \pm 1.5) \,nm$$