Dinamikus nano- és mikrokeménység mérése

Mérési jegyzőkönyv

Rudolf Ádám

Fizika BSc., Fizikus szakirány

Mérőtársak:Kozics György, Májer ImreMérésvezető:Nguyen Quang ChinhMérés időpontja:2011. március 1.Leadás időpontja:2011. március

1. Bevezetés

A mérés során különböző anyagok Vickers-keménységét, Poisson számát, és Young modulusát vizsgáltuk. A mérést egy Shimadzu DUH-202 típusú dinamikus keménységmérővel végeztük. A módszer lényege, hogy egy ismert formájú (négyzet alapú gúla) gyémánt mérőfejet (Vickers fej) a műszer számítógépvezérléssel adott terhelési sebességgel az anyagba nyomja egy előre meghatározott maximális erő eléréséig (F_m), majd rögtön kihúzza azonos sebességgel, és közben folyamatosan méri a mérőfej behatolási mélységét. A Vickers-keménység a maximális erő, és a minta, valamint a fej érintkezési felületének hányadosa:

$$HV = \frac{F}{A}$$

Egy tipikus mérési görbe így néz ki (1. acél mérés):

1. ábra. Acél minta mérési görbéje a tehermentesítési szakaszra illesztett egyenessel

A görbe az origóból indul, és a felfutó szakasz a benyomódást jelenti. A csúcs után az erő csökkenésével egy darabig még növeszik a benyomódás, ez a mérőfej tehetetlensége miatt van. Ezután következik a tehermentesítési szakasz: ezt a deformáció rugalmas, reverzibilis része okozza. A görbe legvége visszahajlik (van, hogy az origóig), ez kiértékelésnél nem használható.

2. Statikus keménységmérés

A Vickers keménységet statikus módon úgy mérjük, hogy egy Vickers fejet adott erővel az anyagba nyomunk, ezután megmérjük a maradó nyom felületét. A már leírt dinamikus módszer ennél kifinomultabb, de reprodukálható vele a statikus mérés. A maximális erőt ismerjük, a nyom felülete pedig meghatározható a Vickers fej geometriájának ismeretében. A keménységre a következő képlet adódik:

$$HV = 1,8544 \frac{F_m}{49 h_0^2}$$

A fenti egyenletben h_0 a maradó nyommélység, vagyis nagyjából az a mélység, ahol a kiemelkedő tűre ható erő elérte a nullát. Ez pontosan nem igaz, de h_0 leolvasható a mérés grafikonjáról.

Négy tiszta anyagot vizsgáltunk meg: acél, alumínium, réz és nikkel mintákat. A acél mintán négy, a többin három mérést végeztünk. Az alkalmazott maximális erő 500 mN volt. Az alábbi táblázatban feltüntettem a mért h_0 értékeket, az ezekből számolt Vickert keménységeket minden mérésre. A méréseket átlagoltam, ezt tekintem mérési eredménynek. Hibának a számolt keménységértékek szórását vettem.

		Acél	Alumínium	Réz	Nikkel
1. mérés	h0 (μm)	1,46	5,68	3,14	2,41
	HV (MPa)	8880,76	586,52	1914,31	3265,80
2. mérés	h0 (μm)	1,51	5,45	3,07	2,29
	HV (MPa)	8322,09	636,11	2009,02	3614,01
3. mérés	h0 (μm)	1,50	5,60	3,08	2,20
	HV (MPa)	8441,46	603,39	2000,53	3905,34
4. mérés	h0 (μm)	1,48	\setminus	\searrow	\mathbf{X}
	HV (MPa)	8605,05	\setminus	\searrow	\setminus
Átlag	HV (MPa)	8562	609	1975	3595
	ΔHV (MPa)	209	21	43	261

1. táblázat. Tiszta anyagok statikus keménységmérése

3. Dinamikus keménységmérés

Az előző fejezetben nem használtuk ki a dinamikus mérés nyújtotta előnyöket. Pontosabb értéket kapunk, hogyha h_0 helyett a következő értéket alkalmazzuk:

$$h_c = h_m - h_s = h_m - \delta \frac{F_m}{S}$$

 δ egy a Vickers fejre jellemző állandó, értéke 0,75, S a fenti görbe tehermentesítési szakaszának meredeksége, amit egyenesillesztéssel kapunk, és h_m a maximális benyomódás. Az így kiszámolt h_c a maximális benyomódáshoz tartozó érintkezési mélység. Az illesztett egyenes jelölve van az *1. ábrán*. Ekkor geometriai megfontolások miatt a következőképpen számolhatjuk a keménységet:

$$HV = \frac{F_m}{24.5 h_0^2}$$

Az illesztéseket elvégeztem, és a mérési adatokból kikerestem a maximális benyomódást. Az előző esetekre kiszámoltam h_c -t, és az 1. táblázat értékeit újra kiszámoltam. Ezeket az eredményeket tartalmazza a 2. táblázat:

		Acél	Alumínium	Réz	Nikkel	
1. mérés	hm (µm)	1,75	5,59	3,20	2,47	
	S (mN/μm)	1431	2384	1732	2077	
	hc (µm)	1,49	5,44	2,98	2,29	
	HV (MPa)	9243	691	2292	3898	
2. mérés	hm (µm)	1,78	5,39	3,15	2,37	
	S (mN/μm)	1484	2183	1820	1788	
	hc (µm)	1,52	5,22	2,94	2,16	
	HV (MPa)	8806	750	2359	4367	
3. mérés	hm (µm)	1,76	5,56	3,17	2,32	
	S (mN/μm)	1424	2043	1681	1850	
	hc (µm)	1,50	5,37	2,95	2,11	
	HV (MPa)	9099	707	2343	4563	
4. mérés	hm (µm)	1,77	\langle	\langle	$\left. \right\rangle$	
	S (mN/μm)	1407,00	\langle	\langle	$\left \right\rangle$	
	hc (µm)	1,50	$\left.\right\rangle$	\setminus	>	
	HV (MPa)	9064,55	\searrow	\searrow	\geq	
Átlag	HV (MPa)	9053	716	2332	4276	
	ΔHV (MPa)	157	25	29	279	

2. táblázat. Tiszta anyagok dinamikus keménységmérése

A kapott értékeket összehasonlítottam az irodalmi értékekkel:

HV_{Acél}: 251 MPa, HV_{Al}: 167 MPa, HV_{Cu}: 369 MPa, HV_{Ni}: 638 MPa

Ezek láthatóan eléggé különböznek a kapott értékektől, aminek az lehet az oka, hogy számtalan keménységmérő módszer létezik: mi nanokeménységet mértünk, ami azt jelenti, hogy nanoméretű fejet használtunk, de van mikrokeménység is, és egészen nagyméretű berendezéseket is használnak. Ezenkívül léteznek másfajta fejek is. A különböző módon mért keménységek igencsak eltérhetnek egymástól.

4. Young-modulus meghatározása

A Young-moulus kiszámolásához először meg kell határoznunk a redukált modulust:

$$E_r = \frac{\sqrt{\pi} S}{2\beta h_c \sqrt{24.5}}$$

Ekkor a Young-modulus:

$$E = \frac{1 - \nu}{\frac{1}{E_r} - \frac{1 - \nu_i^2}{E_i}}$$

A redukált modulus és a Young-modulusz formulájában szereplő számok: $\beta = 1,012$, a Vickers fejre jellemző állandó, v a minta anyagának, $v_i = 0,17$ a gyémánt fejnek a Poisson száma, $E_i = 1070$ GPa pedig a fej Young-modulusa. h_c és S a már korábban is használt értékek. A minták anyagának Poisson száma benne van a mérésleírásban az acél kivételével, amire az irodalomból azt kaptam, hogy 0,27 és 0,33 közötti értéket vehet fel. Mivel nem tudom az összetételét, az átlaggal: 0,3-mal számoltam.

		Acél	Alumínium	Réz	Nikkel
1. mérés	ER (GPa)	170	78	103	161
	E (GPa)	141	54	74	132
2. mérés	ER (GPa)	172	74	109	146
	E (GPa)	143	52	79	118
3. mérés	ER (GPa)	168	67	101	155
	E (GPa)	139	47	72	126
4. mérés	ER (GPa)	166	$\left.\right\rangle$	$\left\langle \right\rangle$	$\left.\right\rangle$
	E (GPa)	137	\langle	\langle	\langle
Átlag	E (GPa)	140	51	75	125
	ΔE (GPa)	2	3	3	6

3. táblázat: tiszta anyagminták Young-modulusának meghatározása

Ezeket is összehasonlíthatjuk az irodalmi értékekkel:

 $E_{Ac\acute{e}l} = 200 \text{ GPa}, E_{Al} = 70 \text{ GPa}, E_{Cu} = 110 \text{ GPa} - 130 \text{ GPa}, E_{Ni} = 200 \text{ GPa}$

Ez már közelebb van, de még mindig elég rossz mérésnek tűnik.

5. Szilárdoldatos keményedés

A tiszta anyagok vizsgálata után egy Al-Mg szilárdoldat mintasorozatot vizsgáltunk. A minták Vickers keménységének, és Young-modulusának koncentrációfüggésére voltunk kíváncsiak. Hét mintát vizsgáltunk, mindegyiken két mérést végeztünk. A mintákban kis (százalék nagyságrendű) koncentrációjú magnézium volt alumíniumban oldva.

Elméleti megfontolások alapján azt várjuk, hogy az oldott anyag koncentrációjának növekedésével növekedni fog az anyag keménysége. Ez a diszlokációk, és az ötvöző atomok vonzó kölcsönhatása miatt van, ami azt okozza, hogy a diszlokáció körül kialakuló ötvöző atom felhő akadályozza a diszlokáció mozgását.

Két jóslat van a kritikus nyírófeszültség koncentrációfüggésére. Híg szilárdoldatok esetére:

$$\tau_p = \tau_0 + Bc^{1/2}$$

Nagyobb koncentrációjú oldatra:

$$\tau_{p} = \tau_{0} + B' c^{2/3}$$

Ahol τ_0 a tiszta anyag kritikus nyírási feszültsége, *c* az ötvöző anyag koncentrációja, *B* illetve *B'* pedig anyagi állandók. A keménység lineárisan függ a nyírófeszültségtől, tehát a keménységtől is hasonló, hatványos koncentrációfüggést várunk. Ezért a különböző mintákra az előző fejezetekhez hasonlóan kiszámoljuk a keménységeket, és Young-modulusokat, és a keménységekre a koncentráció függvényéven illesztünk egy 1/2-es, egy 2/3-os kitevőjű hatványfüggvényt, és egy harmadikat, aminek a kitevője is illesztési paraméter.

A már ismert módszerekkel kiszámoltam a keménységet, és Young-modulust. A kapott értékeket a *4. táblázat* tartalmazza. Helyhiány miatt ide csak a végeredményeket írtam be.

с (%)	HV (MPa)	∆HV (MPa)	E (GPa)	∆E (GPa)
0	261	3	48	2,3
0,47	429	1,3	18	1
0,93	690	159	35	6,6
1,45	702	243	14	1,4
2,7	683	10	21	0,7
4,5	1115	205	37	1,2
7,3	993	51	9	0,1

4. táblázat. A Cu-Mg ötvözetek Vickers keménységei, és Young-modulusai

Az keménységeket ábrázoltam a koncentráció függvényében, és illetsztettem rá a következő függvényeket:

 $HV = HV_0 + Ac^{1/2}$

 $HV = HV_1 + A'c^{2/3}$

 $HV = HV_2 + A''c^n$

Az illesztési paraméterek a következők lettek (az illesztésnél figyelembe vettem az *y* értékek hibáját is):

HV0 (MPa)	∆HV0 (MPa) /	A (MPa)	ΔA (MPa)		
258	co.	6,6	249	5,5		
HV1 (MPa)	∆HV1 (MPa) /	A' (MPa)	ΔA' (MPa)		
276		11	244	18		
HV2 (MPa)	∆HV2 (MPa) /	A" (MPa)	ΔA" (MPa)	n	Δn
261	2	2,9	251	4,2	0,53	0,014

5. táblázat. A c-HV függvények illesztési paraméterei a hibákkal együtt

A kapott értékeket ábrázoltam a hibákat is feltüntetve, mindhárom illesztett függvénnyel együtt. A kapott grafikon:

2. ábra. A számolt Vickers keménység értékek a koncentrációk függvényében, háromféle illesztett hatványfüggvénnyel

A grafikonon látszik, és a kapott paraméterekről is leolvasható, hogy a 2/3-os kitevőhöz közelebb van a valódi adatsor.

6. Plasztikus instabilitás

Már említett jelenség, hogy az ötvöző atomok a diszlokációk köré gyűlnek, akadályozva ezzel a mozgását. Ám amint a diszlokációt elegendő feszültség éri, hogy sebessége nagyobb legyen a diffúzió sebességénél, a felhő nem tudja követni, és kiszabadul. Ettől az anyag hirtelen felpuhul. Az ilyen jelenségek fellépése a görbében egy lépcsőt fog adni, mert az erő növelése nélkül hirtelen beljebb ugrik a tű az anyagba. Mivel a diszlokációk nagy mennyiségben jelen vannak, ez a jelenség periodikusan ismétlődni fog. Ezt a jelenséget nevezzük plasztikus instabilitásnak. Hogy mekkora a mértéke, és a periódusa, azt a terhelési sebesség határozza meg.

Mérésünk utolsó szakaszában ezt a jelenséget vizsgáltuk kvalitatív módon. Ehhez a már adott 1,45%-os ötvözet mérését elvégeztük még kétszer, alacsonyabb terhelési sebességek mellett.

Hogy jól lehessen látni, ábrázoltam a leglassabb mérést:

3. ábra. A legalacsonyabb (2,5 mN/s) terhelési sebességg mellett felvett benyomódási görbe

Az effektus jobban látszik, hogyha a mérési pontokat egy sima görbével közelítjük, és az ettől való eltérést vizsgáljuk. Ehhez hatványfüggvényt illesztettem a mérési adatokra, és képeztem a kettő különbségét, majd ezeket ábrázoltam egy grafikonon:

4. ábra. Benyomódási görbék eltérése a rájuk illesztett hatványfüggvénytől különböző terhelési sebességeknél

Az eredeti mérési görbéken is látszik, de ezen az ábrán méginkább, hogy a kisebb sebességekre ezek a lépcsők kisebbek. 25 mN/s-os sebességnél nem is jelennek meg ezek a periodikus változások, bár 4 µm környékén látszik egy kis hullámzás, ami akármi is lehet. Mégis van valami statisztikus eltérés, de ez csak annak köszönhető, hogy a görbe nem közelíthető tökéletesen hatványfüggvénnyel. Az is szépen látszik, hogy nagyobb benyomódásoknál megnő ezeknek a lépcsőknek a mérete.